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 Abstract: Motivated by the need to enhance the precision of land use/land cover classification for mining 

environments challenged by rapid anthropogenic and natural changes, we analysed multispectral Sentinel 2A 

satellite data using four different classifiers: Maximum Likelihood Classifier (MLC), Support Vector Machine 

(SVM), Random Tree (RT) and Random Forest (RF). Using adjusted training sample sizes drawn from the 

Kishushe iron ore mining site in Taita Taveta, Kenya, we conducted image analysis and compared the 

classification accuracies of the four methods, confirmed further by ground truthing. The study met the main 

objective of evaluating and comparing the performance of the traditional Maximum Likelihood classifier with 

the three machine learning algorithms of Support Vector Machine (SVM), Random Trees (RT), and Random 

Forest (RF). Eight land use/land cover classes were generated from each of the four classifications performed 

in R statistics software for RF and in ArcGIS 10.7 for RT, MLC and SVM methods. Random Forest (RF) method 

delivered the best overall accuracy at 74.63 % with a Kappa value of 0.67. Random Trees (RT) method came 

second at 72.64 % with a Kappa value of 0.64. The overall accuracy of the SVM method was 58.21 % with a 

Kappa value of 0.46 and for the MLC method, the overall accuracy was 57.21 % with a Kappa value of 0.45. 

These results confirmed that machine learning classifiers outperform traditional classifiers. The study also 

confirmed that for robust land use/land cover classification, it is essential to have quality training data as the 

quality can have large and considerable effects on classification results. Since the reliability of land use/land 

cover (LULC) maps derived from remotely sensed data for mining sites depends on accurate classification, this 

study gives evidence-based recommendation for adopting machine learning algorithms in satellite image 

analysis and classification to support environmentally sustainable decisions and informed policy direction for 

sound mine planning and monitoring. 

Keywords- Accuracy, earth observation, land use/land cover change, Maximum Likelihood, Random Forest, 

Random Trees, Support Vector Machine.  

 

1. INTRODUCTION 

Globally, there has been a rising awareness of, and political goodwill towards, the universal 

sustainability agenda. This growing awareness concerns both the United Nations SDGs and region- or country-

specific sustainability goals. Research on mining and sustainable development must, therefore, look into the 

resource goals in the food-water-energy nexus interconnecting SDGs 2, 6, 7; the environmental goals including 

ecosystems and natural capital; and the issues affecting land, climate, and oceans interconnecting SDGs 13, 14, 

15 ([1]). The African Union Agenda 7, on environmentally sustainable and climate resilient economies and 

communities, and Kenya Vison 2030’s social pillar on ensuring a clean, safe and healthy environment, are also 

critical to environmentally responsible mining ([2]; [3]). Recent advances in satellite remote sensing have 

availed higher resolutions for environmental studies, a substantial improvement over the limited military 

applications that characterised the first artificial satellites launched in 1957 and 1958 by Russia and the USA, 

respectively. Digital Earth Africa, a recent initiative for earth observation services in Africa which was widely 
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publicised at the 3rd RCMRD International Conference & 4th AfriGEO Symposium held in Nairobi, August 

12–16, 2019, is availing analysis-ready geodata to serve environmental research interests in Africa. Artificial 

Intelligence (AI) and Machine Learning (ML), both key features of the wave of digitalisation and the Fourth 

Industrial Revolution (Industry 4.0 or 4IR), continue to leverage intelligent spatial decision support systems by 

learning from the big data generated from satellite-based imaging sensors. Industry 4.0 has been reflected as 

Mining 4.0 in the modern extractives industry.  

TAITAGIS, a Finnish-Kenyan capacity building project in geoinformatics hosted at Taita Taveta 

University in Kenya’s coastal mineral belt, has been promoting research which applies GIS and remote sensing 

techniques to advance environmentally responsible mining. Kenya’s new Mining Act of 2016 has been referred 

to as Africa’s most modern and progressive mining law, especially because of its provisions for empowering 

local communities, land and property-owners, and artisanal miners as legitimate participants in decision making 

on land acquisition, benefits sharing, and capacity development. This Kenyan case study is justified as part of 

the key research contributions providing new intelligent tools in support of the precise spatial metrics required 

to operationalise progressive mining regulations at community-wide scales in a coherent and systemic manner 

[4]. The iron ore mining site in Kishushe area of Kenya’s coastal mineral belt of Taita Taveta was selected as a 

suitable case study for the main research purpose of testing, evaluating, and comparing the performance of 

traditional and machine learning algorithms. Four different classification methods were compared in evaluating 

land use/land cover features across the mining site. These methods were: Maximum Likelihood Classification 

(MLC); Support Vector Machine (SVM); Random Trees (RT); and Random Forest (RF).  

The specific objectives of this study were to: (1) evaluate and compare four image algorithms to 

distinguish between eight different land use/land cover classes based on Sentinel 2A image; and (2) compare the 

different prediction maps obtained from MLC, SVM, RT, and RF. The different methods were applied to multi-

sensor Sentinel-2 data to classify eight different land categories using the same training sites from Wanjala iron 

mining site in Kishushe. Sentinel 2A imagery was used in this study because it is freely available and has been 

proven to be appropriate for land use/land cover classifications. 

The hypothesis of this paper is that modern machine learning algorithms are more reliable than 

traditional methods in classifying satellite imagery across spaces with complex land use/land cover dynamics 

such as mining areas. The second section of the paper presents the literature survey, beginning with the 

background and scope of the study setting in Kenya. The third section presents the research methodology, 

delving into the details of pre-processing imagery, training data, classification, and accuracy assessments. The 

fourth section presents the results, which are then discussed in detail. The last section presents the conclusion 

and outlook for further research. 

 

2. LITERATURE SURVEY  

Minerals and metals have been central to all the stages of human civilisation, with iron ore production 

trends growing in tandem with industrial developments. With rapid technological advances in the modern world, 

there is an ever-increasing strategic significance of minerals. However, mineral extraction has various 

ecological, environmental and social-economic impacts as evident in Taita Taveta County, Kenya ([4]; [5]; [6]; 

[7]). It is therefore, of high priority to improve their sustainability to avert the hazards caused during extraction. 

Accurate spatial information is key to sustainable mining practices and compliance monitoring. Geomonitoring 

is essential in this respect, hence satellite remote sensing and the spatial analysis tools availed by geographic 

information systems (GIS).  

Various studies across the world show that land clearance, mineral prospecting, mineral exploration 

and mine development have resulted in large-scale land use/land cover changes across the world ([4]; [5]; [8]; 

[9]; [10]; [11]). Mining activities can change entire landscapes, surface mining particularly. Surface mining 

involves accessing shallow ore deposit by removing the soil or rock layers above it and moving the extracted 

overburden materials to nearby areas. Such activities alter land cover by reducing vegetation cover and 

accelerating desertification, with large-scale surface mining activities further affecting soil fertility, ecosystems, 

and regional biodiversity ([8]; [9]; [10]; [11]; [12]; [13]). Mining activities have also raised concerns on 

degrading water quality [14; [15]] and air quality ([16]). and often also public health. In this sense, unregulated 

mining activities have widespread, direct and indirect impacts on sustainable development, which can further be 

explored globally within the framework of Sustainable Development Goals (SDGs). These facts motivate the 

deployment of reliable earth observation and geodata processing techniques to classify and determine the 

precise spatial extents of various land use/land cover categories across mining sites. Though surface mining 

areas are distinguishable from satellite images, the detection and determination of the sizes of these areas 
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through computation has been facing several challenges. To overcome these computational challenges, detailed 

analysis of the spectral signatures of various land cover classes is needed to provide distinguishable 

characteristics of surface mining areas as they include not only mine surface elements, but also waste rock 

dumps, tailings dams, water storage ponds, access roads, milling and processing infrastructure, and housing for 

workers ([12]; [17]). The complex characterisation of mining areas is evident in the usual co-existence of 

natural surface features such as forests together with zones of cleared land for development and other competing 

or conflicting interests and activities such as biodiversity conservation and agriculture. Therefore, it is important 

to precisely discriminate the land-use categories types and determine the spatial extents of land use/land cover 

characteristics of surface mining sites.  

Several studies have compared variances between different machine learning (ML) algorithms in 

classifying the land use/land cover (LULC) using remotely sensed satellite images. Srivastava et al. [18] used 

maximum likelihood classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) 

to perform classification on three Landsat images and compared their accuracies using ground-truthed data. 

Results showed that Artificial Neural Networks (ANN) had the highest accuracy, followed by Support Vector 

Machine (SVM) and lastly, Maximum Likelihood Classifier in the last place (MLC). For example, research 

conducted by Garai and Narayana [19] applied unsupervised classification to land use/land cover change 

detection utilizing unsupervised classification method to find a reduction of 4.7 % in vegetative cover, being the 

result of coal mining. In Ghana, Basommi et al. [20] used maximum likelihood classifier to analyse land 

use/land cover changes in a mining area to determine a significant reduction in vegetative cover. Normalized 

Difference Vegetation Index (NDVI) has also been applied into land use/land cover changes for open cast 

mining ([9]). Support vector machine SVM algorithm is most widely used due to its capabilities of training the 

classifier with less training sample data ([21]). In the recent years, Random forest (RF) machine learning 

algorithm has widely been used by many researchers to perform image classification ([22]; [23]; [24]; ([25]). A 

study made by Pelletier et al. [26] compared classification results in the south of France, and it proved that RF 

had a higher overall accuracy compared to SVM. However, performance of a machine learning classification 

algorithm method is highly dependent on the study region land use/land cover types chosen and the satellite data 

used in study ([11]). 

 

3. MATERIALS AND METHODS 
The study area in Kenya, Kisushe, has interesting location features and a long history of land-mining-

society conflicts which informed its choice for this research. The applied geospatial and space technology 

products, conceptual framework, and software services were so selected as to meet the need for land use/land 

cover classification maps, which are the basis for the shared visual understanding essential to transparent and 

evidence-based decisions. 

 

3.1. Study area 

3.1.1. Geographical and geological setting 

The study area, Kishushe, is flat and located in the Kenyan coastal mineral belt of Taita Taveta County, 

Taita Sub-county, as shown in Figure 1. It lies between 380 10’ 1.45’’ E and 380 11’ 23.22’’ E, and between 30 

14’ 26.30’’ S and 30 15’ 27.30’’ S. Kishushe borders Tsavo East National Park to the north and is part of the 

region’s geologically mineral-rich Mozambique belt with gemstones and industrial minerals ([27]; [28]). The 

mining of iron ore has been taking place in this area since early 2008 ([28]). In Figure 2 is shown a high-

resolution true-colour image of the mining site. 
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Figure 1 Location of Wanjala iron ore mine in Kishushe, Taita Taveta County, Kenya. 

 

3.1.2. Iron ore production in Kishushe  

The main part of the study area, Kishushe, consists of iron ore mine of medium grade (<62% Fe). This 

mining site commands the leading position as the only large-scale iron ore mine in Kenya. The iron ore occurs 

in both alluvial and vein forms. This situation favours open-pit mining methods which, however, impact heavily 

on vegetation and lead to serious land degradation ([29]; [30]). The study area was initially zoned for ranching. 

It had tall trees and good undergrowth for the community to graze and collect grass. The sudden change of land 

use from ranching to mining has significantly impacted the land cover and the ranching community rights, 

leading to constant conflicts between the local community and the mining company, Wanjala Mining Company 

[31]. 

 

3.1.3. Chronology of conflicts due to iron ore mining in Kishushe  

For many years now, Kenya’s only large-scale iron ore mine in Kishushe has been faced with long-

standing land-related disputes. This scenario represents the competing and conflicting “mining and non-mining 

land use” interests in Taita Taveta County, which need urgent redress through integrated spatial modelling and 

information systems to avail shared visual evidence and “actionable location-based intelligence” ([5], [6]). The 

chronology of key conflicts in Kishushe can be traced back to the 1960s, when disputes between local 

communities and the colonial government started and led to a decline in the erstwhile normal production of iron 

ore in the 19th and part of the 20th century.  

From the 1990s to 2010, the increasing value of iron ore and rising community awareness led to rising 

conflicts, pitting local leaders and local community against the mining company, with subsequent arrests. Over 

the 2010–2014 period, conflicts over prospecting rights, pegging, and claims arose [32]. A public inquiry 

conducted in 2016 by the Kenya National Commission on Human Rights [27] and Taita Taveta University 

established prevalent conflicts over land ownership between the local community and the mining company, 

resulting in demonstrations and stoppage of company trucks from ferrying iron ore from the mine site. Boundary 

disputes also arose in early 2014, between Kishushe Cooperative Society and Wanjala Mining Company [27]. In 

2019, demonstrations escalated leading to the closure of the mining operations due to worsening conflicts 

between the company and the local community over workers’ welfare and environmental impacts [33]. 
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Sustainable solutions to these disputes depend on the transparency of the shared visual evidence and active 

participation of all stakeholders in decision making, which is the value addition a map-based research of this 

kind provides. 

 

 
Figure 2 True colour image showing an aerial view of Wanjala iron mining site land use/land cover [34]. 

 

3.1.4. Overview of the study methodology 

The workflow adopted, as shown in Figure 3, consisted of the following steps: (1) satellite image data 

pre-processing; (2) training area data creation; (3) data classification, where four different classification 

algorithms were applied; (4) assessing the classification accuracies; and (5) comparison and mapping of the 

classification results. Each step has been explained in detail hereafter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ajmenrm.ttu.ac.ke/


Land use/land cover classification for the iron mining site of Kishushe, Kenya: A feasibility study of 

traditional and machine learning algorithms  

© 2020, AJMENRM All Rights Reserved               www.ajmenrm.ttu.ac.ke/ 6 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.5. Satellite image data and pre-processing 

The available Sentinel-2 satellite image Level-1C (S2MSI1C-2016-10-08) 

2A_MSIL1C_20161008T074232_N0204_R049_T37MDS_20161008T075021 for the study area was obtained 

from the European Space Agency's (ESA) Sentinel Scientific Data Hub. We processed reflectance images from 

Top-Of Atmosphere (TOA) Level 1C S2, to Bottom-Of-Atmosphere (BOA) Level 2A by using Sen2Cor v2.8 

standalone processor from the ESA ([35]). Level 1C Sentinel was georeferenced to WGS 1984, UTM Zone 37 

N coordinate system. For this study, we only used the bands with a spatial resolution of 10 m namely: band 2-

Blue, band 3-Green, band 4-Red, band 8-NIR, respectively. The other steps in pre-processing of the Sentinel 

(BOA) satellite image included layer stacking, subsetting and masking, which were all conducted in R software 

with raster and RStoolbox package [36]. 

 

3.1.6. Training data  

Prior knowledge of the study area was obtained by visiting the study site and collecting training 

samples using a handheld GPS receiver for the key land-use classes in the mining area. We used Google Earth 

Pro [34] to collect and digitise additional training samples with visual interpretation of the available very high-

resolution image (16th June 2016). We developed a classification scheme based on the prior knowledge of the 

study site where eight training classes were identified, namely: bare ground, cleared ground, green vegetation, 

iron ore stockpile, open ground and open cut pits, open water, waste rock and sand dumps, and savanna 

grassland. A five-metre buffer was calculated to all the training points (n=161) to gain more pixels for training 

the image with the different classifiers. In order to reduce possible error due to the non-random selection of 

training points, another point data set (n=201) was created using Create random points tool in ArcGIS and 

interpreting the land use/land cover  classes with Google Earth. This second data set was used for land use/land 

cover classifications accuracy assessment.  

 

 

Classification 

 

Sentinel-2 Image 

Data pre-processing, atmospheric 

correction, stacking, subsetting and 

masking 

Training Area Data Creation 

R- Software 

Maximum 

Likelihood 

Classifer (MLC) 

Random Trees (RT) Random Forest 

(RF) 

Support Vector 

Machine (SVM) 

Accuracy Assessment 

LULC Maps for RF, SVM, 

RT & MLC 

ArcGIS 10.7 

Figure 3 Procedural workflow from pre-processing data to comparison of classification results. 
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3.1.7. Classification approach 

In total, 161 training samples were used for the classification of Sentinel image and the same training 

sites were used for all the four different classification algorithms. In this study, one traditional classification 

algorithm, the Maximum Likelihood Classifier (MLC), and three machine learning methods: Support Vector 

Machine (SVM), Random Forest (RF), and Random Trees (RT) were used and their performances were 

compared. Three of the classification algorithms (MLC, SVM, and RT) were performed in ArcGIS (ESRI, 

Redlands, CA, USA) with default parameter settings and one classification algorithm (RF) was computed in R 

statistical software version 3.6.1. ([37]). We intentionally compared RT and RF classification methods to see if 

the classification algorithm performance has differences between software. The classifiers are explained briefly, 

subsequently. 

 

3.1.7.1. Maximum Likelihood Classifier (MLC) 

The Maximum Likelihood Classifier is the most common method used for remote sensing supervised 

classification. It is a parametric statistical method where the analyst first supervises the classification by 

identifying representative areas called training areas and the classification process is a standard pixel-based 

technique using a multivariate probability density function of classes ([38];[39]). In this study, MLC was trained 

and classified using ArcGIS 10.7 software with default parameters. 

 

3.1.7.2. Support Vector Machine (SVM) Classifier 

Invented by Vladimir N. Vapnik, [40] “Support Vector Machine” (SVM) is a supervised machine 

learning algorithm which can be used for both classification and regression challenges. As a nonparametric 

method, it requires no a priori knowledge of the structure and statistical distribution of the data being analysed 

and incorporates a regularisation technique which enables it to achieve relatively stable solutions with respect to 

other classification algorithms when addressing least square problems with noisy data ([41]). For classification, 

SVM is a discriminative classifier formally defined by a separating hyperplane. The algorithm outputs an 

optimal hyperplane, which categorises new examples. In two-dimensional space, this hyperplane is a line 

dividing a plane in two parts where in each class lies in either side. SVM separates the classes with a decision 

surface that maximises the margin between the classes ([40]; [21]). We trained the model with SVM classifier in 

ArcGIS 10.7 with default parameters. 

 

3.1.7.3. Random Forest (RF) Classifier 

Random Forests (RF) is an ensemble learning classifier, based on constructing a multitude of decision 

trees, choosing random subsets of variables for each tree, and using the most frequent tree output as the overall 

classification ([42]). Random Forests are widely used in remote sensing applications as it corrects for decision 

trees' habit of overfitting to their training set. A detailed review of RF in remote sensing can be found in ([43]). 

In our study, RF was computed using the randomForest (v.4.6-14) package [44] in R statistics software ([37]). 

 

3.1.7.4. Random Trees (RT) Classifier 

Random Trees is a supervised machine-learning classifier based on constructing a multitude of decision 

trees. Random Trees is basically the same classification method as Random Forest because the Random Trees 

classifier uses [42] Random Forest algorithm; however, it is applied to ArcGIS software. In this study, we used 

default parameters to train the Random Trees classifier. 

 

3.1.8. Accuracy Assessment 

Independent validation data set were applied to investigate the classification accuracy. We calculated 

the Overall Accuracy (OA) and the Kappa Coefficient (κ) [45] based on the confusion matrices of different 

classification techniques. The accuracy of each classification method: Maximum Likelihood (MLC), Support 

Vector Machine (SVM), Random Trees (RT) and Random Forest (RF) was determined by performing an 

accuracy assessment. In this study, reference data that included 201 points, was randomly generated for the 

study area for eight land use/land cover classes in ArcGIS 10.7 software.  

The values of each classified raster in different methods (MLC, SVM, RT, and RF) were extracted to 

points. This joined the raster values of different classification classes to the random reference points. The 

frequency of each randomly extracted points was then calculated to determine how frequently the predicted and 

the true reference values occurred in different classification classes. Finally, a pivot table was created for the 

error matrix of each classification. The Overall Accuracy (OA), producer’s and user’s accuracy and the Kappa 

Coefficient (κ) [45] values for different classes were analysed to evaluate the accuracies of the classification. 
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4. RESULTS AND DISCUSSION 
4.1. Results 

The results of land use/land cover (LULC) classification accuracies obtained by the methods for the 

eight different classes are presented here. 

 

4.1.1. Accuracy Assessment Results 

The best overall accuracy was found for the Random Forest (RF) method as 74.63 % with a Kappa 

value of 0.67. The overall accuracy was 72.64 % with a Kappa value of 0.64 for the Random Trees (RT) 

method. The overall accuracy of the SVM method was 58.21 % with a Kappa value of 0.46. For the MLC 

method the overall accuracy was 57.21 % with a Kappa value of 0.45. In Table I is the presentation of the 

summary of the overall accuracies of all the land use/land cover classes and Kappa values of the four 

classification algorithms. 

Table I Summary of overall land use/land cover classification accuracies and Kappa values among the four 

classification algorithms: MLC, SVM, RT, and RF. 

  MLC SVM RT RF 

Overall accuracy (%)  57.21 58.21 72.64 74.63 

Kappa statistic 0.45 0.46 0.64 0.67 

 

In order to better understand the classification confusions between land use/land cover types, error 

matrices are provided for different classification methods in Tables II, III, IV, and V.  

 

Table II Error matrix for land use/land cover using Maximum Likelihood algorithm. 

LULC 

Classes 

Iron Ore 

Stockpile 

Open 

Water 

Green Vegetation Waste Rock 

and Sand 

Dumps 

Cleared 

Ground 

Open 

Ground 

and Open 

Cut Pit 

Bare 

Ground 

Savanna 

Grassland 

Totals 

Iron Ore 

Stockpile 

3 0 2 2 0 0 0 0 7 

Open Water 0 1 0 0 0 0 1 0 2 

Green Vegetation 0 0 18 1 1 0 0 1 21 

Waste Rock and 

Sand Dumps 

0 0 0 7 0 1 0 0 8 

Cleared Ground 0 0 2 7 5 0 3 1 18 

Open Ground 

and Open Cut Pit 

2 0 1 9 0 14 4 0 30 

Bare Ground 0 0 0 0 0 0 6 0 6 

Savanna 

Grassland 

0 0 40 1 5 0 2 61 109 

Totals 5 1 63 27 11 15 16 63 201 

Producer’s 

Accuracy 

60.0% 100.0% 28.6% 25.9% 45.5% 93.3% 37.5% 96.8%  

User’s accuracy 42.9% 50.0% 85.7% 87.5% 27.8% 46.7% 100.0% 56.0%  

Total true Value 115  Overall Accuracy 57.21%     

Total Reference 

Points 

201  Overall Kappa Statistics 0.45     

 

Table III Error matrix for land use/land cover (LULC) using Support Vector Machine algorithm. 

LULC 

Classes 

Iron Ore 

Stockpile 

Open 

Water 

Green Vegetation Waste Rock 

and Sand 

Dumps 

Cleared 

Ground 

Open 

Ground 

and Open 

Cut Pit 

Bare 

Ground 

Savanna 

Grassland 

Totals 

Iron Ore 

Stockpile 

3 0 3 2 0 0 0 0 8 

Open Water 0 1 0 0 0 0 0 0 1 

Green Vegetation 0 0 11 0 1 0 0 0 12 

Waste Rock and 

Sand Dumps 

1 0 0 13 0 1 0 0 15 

Cleared Ground 0 0 3 8 5 0 3 1 20 

Open Ground 

and Open Cut Pit 

1 0 0 2 0 12 0 0 15 

Bare Ground 0 0 0 0 0 2 10 0 12 

Savanna 

Grassland 

0 0 46 2 5 0 3 62 118 

Totals 5 1 63 27 11 15 16 63 201 
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Producer’s 

Accuracy 

60.0% 100.0% 17.5% 48.1% 45.5% 80.0% 62.5% 98.4%  

User’s accuracy 37.5% 100.0% 91.7% 86.7% 25.0% 80.0% 83.3% 52.5%  

Total true Value 117 Overall Accuracy 58.21%      

Total Reference 

Points 

201 Overall Kappa Statistics 0.46      

 

 

Table IV Error matrix for land use/land cover (LULC) using Random Trees algorithm. 

LULC 

Classes 

Iron Ore 

Stockpile 

Open Water Green 

Vegetation 

Waste Rock and 

Sand Dumps 

Cleared 

Ground 

Open 

Ground and 

Open Cut 

Pit 

Bare 

Ground 

Savanna 

Grassland 

Totals 

Iron Ore 

Stockpile 

3 0 1 2 0 0 0 0 6 

Open Water 0 1 0 0 0 0 0 0 1 

Green 

Vegetation 

0 0 46 0 1 0 0 0 47 

Waste Rock 

and Sand 

Dumps 

1 0 1 14 0 3 0 0 19 

Cleared 

Ground 

0 0 1 7 5 0 2 4 19 

Open Ground 

and Open Cut 

Pit 

1 0 0 1 0 11 3 0 16 

Bare Ground 0 0 0 1 0 1 7 0 9 

Savanna 

Grassland 

0 0 14 2 5 0 4 59 84 

Totals 5 1 63 27 11 15 16 63 201 

Producer’s 

Accuracy 

60.0% 100.0% 73.0% 51.9% 45.5% 73.3% 43.8% 93.7%  

User’s 

accuracy 

50.0% 100.0% 97.9% 73.7% 26.3% 68.8% 77.8% 70.2%  

Total true 

Value 

146 Overall Accuracy 72.64%      

Total 

Reference 

Points 

201 Overall Kappa Statistics 0.64      

 

Table V Error matrix for land use/land cover (LULC) using Random Forest algorithm. 

LULC 

Classes 

Iron Ore 

Stockpile 

Open 

Water 

Green 

Vegetation 

Waste Rock 

and Sand 

Dumps 

Cleared 

Ground 

Open Ground 

and Open Cut 

Pit 

Bare 

Ground 

Savanna 

Grassland 

Totals 

Iron Ore 

Stockpile 

3 0 1 2 0 0 0 0 6 

Open Water 0 1 0 0 0 0 0 0 1 

Green Vegetation 0 0 54 0 1 0 0 1 56 

Waste Rock and 

Sand Dumps 

0 0 1 10 0 2 0 0 13 

Cleared Ground 1 0 1 8 5 0 2 4 21 

Open Ground 

and Open Cut Pit 

1 0 0 1 0 11 2 0 15 

Bare Ground 0 0 0 2 0 2 8 0 12 

Savanna 

Grassland 

0 0 6 4 5 0 4 58 77 

Totals 5 1 63 27 11 15 16 63 201 

Producer’s 

Accuracy 

60.0% 100.0% 85.7% 37.0% 45.5% 73.3% 50.0% 92.1%  

User’s accuracy 50.0% 100.0% 96.4% 76.9% 23.8% 73.3% 66.7% 75.3%  

Total true Value 150  Overal Accuracy  74.63%      

Total Reference 

Points 

201 Overal Kappa Statistics 0.67      

          

 

The average values of producer’s and user’s accuracy are presented in Table VI. Random Forest (RF) 

achieved the highest overall accuracy, followed by the Random Trees (RT) and Support Vector Machine (SVM) 

methods. The Maximum Likelihood (MLC) method had clearly a lower overall accuracy than all the other 

methods.  
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Table VI: Average of producer’s and user’s accuracy for different land use/land cover (LULC) classification 

algorithms. 

Method Average of producer’s and 

user’s accuracy 

Random Forest (RF) 69.13% 

Random Trees (RT) 69.11% 

Support Vector Machine (SVM) 66.80% 

Maximum Likelihood (MLC) 61.50% 

 

 

4.1.2. Mapping performance comparison of the four classification algorithms 

The results of the classification of the land use/land cover characteristics for the year 2016 with four 

different algorithms (MLC, SVM, RT, and RF) is shown in Figure 4. As indicated earlier, the LULC maps had 

eight classes and the savanna grassland dominates in each of the classifications. From Figure 4, it can also be 

seen that there exist some clear differences in different algorithm map classifications, and this will be discussed 

in detail in the discussion section.  

 
Figure 4 land use/land cover classifications for four different algorithms including Maximum Likelihood 

Classifier (MLC), Support Vector Machine (SVM), Random Tree (RT), and Random Forest (RF). 

 

4.2. Discussion of Results 

We discuss here the results obtained with emphasis on evaluating and comparing the accuracy 

assessments. 

 

4.2.1. Accuracy assessment and map comparison 

Information obtained from land use/land cover (LULC) analysis may be required for making informed 

decisions, policy making and/or administrative purposes. With the respective spatial details, the information 

from LULC analysis may be crucial for environmental protection and spatial planning, hence the need for it to 
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be as accurate as possible. This is made possible by carrying out accuracy assessments or validation to prove the 

reliability of the resulting data and information to various users [46]. 

In this study, accuracy assessment results illustrated that open water, green vegetation, and savanna 

grassland classes could be accurately identified having average producer’s and user’s accuracy of 100%, 91.1%, 

and 83.7% using Random Forest; and 100%, 85.4%, and 81.9% using Random Trees classification methods for 

the Sentinel 2 image. For Support Vector Machine (SVM) and Maximum Likelihood Classifier (MLC), the 

LULC classification performed differently. We established the greatest differences in the classification of green 

vegetation and cleared vegetation, which were predicted as savanna grasslands and bare ground using the SVM 

and MLC (Figure 4). Figure 4 shows that the traditional MLC clearly overestimates open water class whereas all 

the three machine learning classifiers were able to detect the open water class satisfactorily. In Figure 5, there is 

only a small watering pond. MLC estimated open water to be all around the study area, which was not the true 

scenario on the ground after confirmation by ground truthing. 

 
Figure 5 Maximum Likelihood Classifier (MLC) identifying open water classes where there were none, in 

contrast to the right classification made by the three machine learning algorithms: Support Vector Machine 

(SVM), Random Tree (RT), and Random Forest (RF). 

 

From Figure 6, it can be seen that both RT and RF classification algorithms predicted large areas as 

green vegetation (verified with Normalized Difference Vegetation Index – NDVI) in contrast to MLC and SVM, 

which predicted little green vegetation. This outcome is possibly due to a mixed pixel challenge as portrayed in 

MLC and SVM methods. Therefore, savanna grassland appearing to have similar landscape characteristics and 

similar spectral response to green vegetation was predicted more in SVM and MLC. RF and RT proved to 

produce more accurate results compared to MLC and SVM methods for all the related land use/land cover 

classes. It should be noted, however, that SVM has widely been applied successfully to bitemporal forest-cover 

change studies with higher accuracies than decision trees as noises in the training data increased ([47]). This 

study used only pixel-based classification approach; however, it has been shown in many studies that object-

based image classification can outperform pixel-based classification as objects can approximate heterogeneous 

real-world features better than arbitrary pixels. In addition, objects, instead of pixels, also reduce local spectral 

variability and the ‘salt and pepper’ effect (see e.g. [48]; [49]; [50]). 
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Figure 6 Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM) predicting much less 

green vegetation than Random Tree (RT) and Random Forest (RF) verified with normalised difference 

vegetation index (NDVI) map interpretation. 

 

 

5. CONCLUSIONS 
Earth observation services through satellite remote sensing and computer-based image analysis 

capabilities have undergone profound advancements since the late 20th century. The current velocity of changes 

in spatial data and information generation technology through remote sensing and image interpretation, 

leveraged by computer algorithms, continues to improve land use/land cover mapping and analysis for 

georeferenced and decision-ready results. For sound decision support, however, the different methods of land 

use/land cover classification must be evaluated for reliability, as this study has demonstrated by applying and 

comparing four different classification methods to a case study of a mining site in Kishushe, Taita Taveta 

County, Kenya.  

The study met the main objective of evaluating the performance of the traditional Maximum 

Likelihood Classifier (MLC) with the machine learning algorithms of Support Vector Machine (SVM), Random 

Trees (RT), and Random Forest (RF). The feasibility of the four approaches as applied to the selected iron 

mining site in Kenya was performed using Sentinel 2A satellite image data. Eight land use/land cover classes 

were generated from each of the four classifications performed in R statistics software for RF and in ArcGIS 

10.7 for RT, MLC and SVM methods. Random Forest (RF) method delivered the best overall accuracy at 74.63 

% with a Kappa value of 0.67. Random Trees (RT) method came second at 72.64 % with a Kappa value of 0.64. 

The overall accuracy of the SVM method was 58.21 % with a Kappa value of 0.46 and for the MLC method, the 

overall accuracy was 57.21 % with a Kappa value of 0.45. 

Intentionally, the study did not analyse land use/land cover change over time, but only analysed a one-

time Sentinel satellite image for October 08, 2016. The reasons for this were, firstly, we did not have up-to-date 

training data from the study site, and it is well known that land use/land cover can rapidly change across mining 

areas. In Figure 7 is shown a Change Vector Analysis (CVA) map of the study area that characterises dynamic 

changes in multi-spectral space by a change vector over two multi-temporal Sentinel 2A imageries of 2016 and 

2019. Visible in Figure 7 are clear changes in black iron ore stockpiles as well as expansion of cleared ground 
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among other changes in land use/land cover. Secondly, this study focused on the mapping and accuracy 

performance of different classification algorithms instead of analysing the actual land use/land cover change. 

The study found that there exist clear differences in overall accuracy and Kappa values between different 

classification algorithms. This study also established clearly that machine learning algorithms outperform the 

traditional maximum likelihood classifier. By exploring the influence of the training sample size, it is 

established that to achieve accurate classification, the main area of concern is the quality of training data.  

 
Figure 7. Sentinel 2A images of the study area for 2016 and 2019 and Change vector analysis (CVA) map 

showing the magnitude of change between the two images. 

 

In future studies, we recommend using R software as it produced the most accurate results in this case 

study. As this study adopted the default parameters in running all the algorithms, improved results could be 

achieved by fine-tuning the classification algorithms. This is a ready possibility in the open-source R statistics 

software as opposed to ArcGIS, which is more limited in this aspect. We also recommend that object-based 

image analysis (OBIA) classification methods should be explored alongside pixel-based classification methods 

to gain the most accurate classification results for mining area mapping and monitoring. 
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